skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Andriyani, Yulita"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Tropical wetlands and freshwaters are major contributors to the growing atmospheric methane (CH4) burden. Extensive peatland drainage has lowered CH4emissions from peat soils in Southeast Asia, but the canals draining these peatlands may be hotspots of CH4emissions. Alternatively, CH4oxidation (consumption) by methanotrophic microorganisms may attenuate emissions. Here, we used laboratory experiments and a synoptic survey of the isotopic composition of CH4in 34 canals across West Kalimantan, Indonesia to quantify the proportion of CH4that is consumed and therefore not emitted to the atmosphere. We find that CH4oxidation mitigates 76.4 ± 12.0% of potential canal emissions, reducing emissions by ~70 mg CH4m−2d−1. Methane consumption also significantly impacts the stable isotopic fingerprint of canal CH4emissions. As canals drain over 65% of peatlands in Southeast Asia, our results suggest that CH4oxidation significantly influences landscape-scale CH4emissions from these ecosystems. 
    more » « less